Quantcast
Channel: CodeSection,代码区,Python开发技术文章_教程 - CodeSec
Viewing all articles
Browse latest Browse all 9596

使用 ChatterBot构建聊天机器人

$
0
0

ChatterBot是一个基于机器学习的聊天机器人引擎,构建在python上,主要特点是可以自可以从已有的对话中进行学习。

安装调试最简单的聊天机器人

安装

pipinstallchatterbot

基本使用

#!/usr/bin/python # -*- coding: utf-8 -*- fromchatterbotimportChatBot fromchatterbot.trainersimportChatterBotCorpusTrainer chatbot = ChatBot("myBot") chatbot.set_trainer(ChatterBotCorpusTrainer) # 使用英文语料库训练它 chatbot.train("chatterbot.corpus.english") # 开始对话 while True: print(chatbot.get_response(input(">")))

默认情况下, ChatterBot 使用JsonDatabaseAdapter作为storage adapter,使用ClosestMatchAdapter作为logic adapter, 使用VariableInputTypeAdapter作为input adapter。

storage adapter

ChatterBot创建之后,会建立一个类族适配器(adapter classes),在该适配器下该ChatterBot可以连接到不同类型的数据集。本文所采用的是JsonDatabaseAdapter,该Storage adapter是以json格式存储数据的。注意: JsonDatabaseAdapter 并不适用于海量数据,如果数据集过大该方法的性能将受到很大局限。

创建ChatterBot的时候可以在入参中指定JsonDatabaseAdapter,如下面的参数所示:

bot = ChatBot( "Norman" storage_adapter="chatterbot.adapters.storage.JsonDatabaseAdapter", database="./database.json" )

其中的database参数是用以指定所创建的chat bot所使用数据集的位置。上述的定义吗,我们可以看出该chat bot所使用的数据集是database.json,如果该database.json不存在的话,则会自动创建。注意:JsonDatabaseAdapter是ChatterBot的默认adapter,可以缺省。

输入和输出adapters

在创建ChatBot的时候可以指定输入和输出终端adapter。输入终端adapter用以读取终端的输入,输入终端adapter则是打印出chat bot的应答信息。

使用如下:

bot = ChatBot( "Norman" storage_adapter="chatterbot.adapters.storage.JsonDatabaseAdapter", input_adapter="chatterbot.adapters.input.TerminalAdapter", output_adapter="chatterbot.adapters.output.TerminalAdapter", database="./database.json" ) Logic adapters

在新建ChatBot的时候可以指定logic_adapters的值,该参数是一序列的logic adapter。在ChatBot中一个logic adapter就是一个类,这个类是用于接收输入的语句和反馈该输入的语句。

在logic adapter的使用数量上并不受限。下面的例子中可以看出,使用的是两个logic adapter。其中TimeLogicAdapter是返回当前时间,MathematicalEvaluation adapter则是用以计算问题的。

bot = ChatBot( "Norman" storage_adapter="chatterbot.adapters.storage.JsonDatabaseAdapter", input_adapter="chatterbot.adapters.input.TerminalAdapter", output_adapter="chatterbot.adapters.output.TerminalAdapter", logic_adapters=[ "chatterbot.adapters.logic.MathematicalEvaluation", "chatterbot.adapters.logic.TimeLogicAdapter" ], database="./database.json" )

创建自己的adapters参考默认使用的 ClosestMatchAdapter 、 VariableInputTypeAdapter 。如果需要语音输入,则可以调用百度语音接口。

让机器人支持中文

Chatterbot提供一个公用模块进行数据集的训练,目前该模块集成7种语种的训练,包括英语,葡萄牙语、西班牙语、法语、印尼语、意大利语和中文。训练集存放在\Lib\site-packages\chatterbot\corpus\data目录下:


使用 ChatterBot构建聊天机器人

使用中文语料库进行训练(注意,这里只支持Python 3,否则会报编码错误),报错内容为:UnicodeDecodeError: ‘ascii’ codec can’t decode byte 0xe4 in position 0: ordinal not in range(128)

#!/usr/bin/python # -*- coding: utf-8 -*- fromchatterbotimportChatBot fromchatterbot.trainersimportChatterBotCorpusTrainer chatbot = ChatBot("myBot") chatbot.set_trainer(ChatterBotCorpusTrainer) # 使用英文语料库训练它 chatbot.train("chatterbot.corpus.chinese") # 开始对话 while True: print(chatbot.get_response(input(">")))

ChatterBot也支持训练数据集的子集,如只想要训练英文问候语和对话,则只要将该两个子集导入进行训练即可:

chatterbot.train( "chatterbot.corpus.english.greetings", "chatterbot.corpus.english.conversations" )

里面虽然包含各种语言,但是训练集的数据非常的小,如需更好的表现,需要自己添加更多的数据。

手动训练机器人

ChatterBot 内置training class,也可以根据自己的需要自行创建,通过调用train()函数之前先调用set_trainer() 来进行设置。使用方法如下:

#!/usr/bin/python # -*- coding: utf-8 -*- fromchatterbotimportChatBot fromchatterbot.trainersimportListTrainer my_bot = ChatBot("Training demo") my_bot.set_trainer(ListTrainer) my_bot.train([ "嗳,渡边君,真喜欢我?", "那还用说?", "那么,可依得我两件事?", "三件也依得", ]) # test print(my_bot.get_response("真喜欢我?")) print(my_bot.get_response("可依得我两件事?"))

训练好的数据,默认存在./database.db(参考 jsondatabase.py ),不是sqlite数据库,实际是 jsondb ,对json做了封装(参考 jsondb/db.py )

只读模式

ChatterBot是会对每个输入的语句进行学习的。如果想要使得你已经训练过的bot不再继续学习输入的语句,可以通过以下方式进行设置,在初始化的时候将read_only设置为true。

chatbot = ChatBot("wwjtest", read_only=True)//否则bot会学习每个输入

最后一个问题,语料库可以从哪里来?

电视电影字幕 知识问答库

参考链接:

http://chatterbot.readthedocs.io/en/stable/ https://github.com/gunthercox/django_chatterbot https://github.com/gunthercox/ChatterBot https://github.com/wwj718/deepThought

Viewing all articles
Browse latest Browse all 9596

Latest Images

Trending Articles