Apache Spark is a great way for performing large-scale data processing. Lately, I have begun working with PySpark , a way of interfacing with Spark through python. After a discussion with a coworker, we were curious whether PySpark could run from within an IPython Notebook . It turns out that this is fairly straightforward by setting up an IPython profile.
Here’s the tl;dr summary:
Install Spark Create PySpark profile for IPython Some config Simple word count exampleThe steps below were successfully executed using Mac OS X 10.10.2 and Homebrew . The majority of the steps should be similar for non-windows environments. For demonstration purposes, Spark will run in local mode, but the configuration can be updated to submit code to a cluster.
Many thanks to my coworker Steve Wampler who did much of the work.
Installing Spark Download the source for the latest Spark release Unzip source to ~/spark-1.2.0/ (or wherever you wish to install Spark) From the CLI, type: cd ~/spark-1.2.0/ Install the Scala build tool: brew install sbt Build Spark: sbt assembly (Takes a while) Create PySpark Profile for IPythonAfter Spark is installed, let’s start by creating a new IPython profile for PySpark.
ipython profile create pysparkTo avoid port conflicts with other IPython profiles, I updated the default port to 42424 within ~/.ipython/profile_pyspark/ipython_notebook_config.py :
c = get_config() # Simply find this line and change the port value c.NotebookApp.port = 42424Set the following environment variables in .bashrc or .bash_profile :
# set this to whereever you installed spark export SPARK_HOME="$HOME/spark-1.2.0" # Where you specify options you would normally add after bin/pyspark export PYSPARK_SUBMIT_ARGS="--master local[2]"Create a file named ~/.ipython/profile_pyspark/startup/00-pyspark-setup.py containing the following:
# Configure the necessary Spark environment import os import sys spark_home = os.environ.get('SPARK_HOME', None) sys.path.insert(0, spark_home + "/python") # Add the py4j to the path. # You may need to change the version number to match your install sys.path.insert(0, os.path.join(spark_home, 'python/lib/py4j-0.8.2.1-src.zip')) # Initialize PySpark to predefine the SparkContext variable 'sc' execfile(os.path.join(spark_home, 'python/pyspark/shell.py'))Now we are ready to launch a notebook using the PySpark profile
ipython notebook --profile=pyspark Word Count ExampleMake sure the ipython pyspark profile created a SparkContext by typing sc within the notebook. You should see output similar to <pyspark.context.SparkContext at 0x1097e8e90> .
Next, load a text file into a Spark RDD. For example, load the Spark README file:
import os spark_home = os.environ.get('SPARK_HOME', None) text_file = sc.textFile(spark_home + "/README.md")The word count script below is quite simple. It takes the following steps:
Split each line from the file into words Map each word to a tuple containing the word and an initial count of 1 Sum up the count for each word word_counts = text_file \ .flatMap(lambda line: line.split()) \ .map(lambda word: (word, 1)) \ .reduceByKey(lambda a, b: a + b)At this point, the word count has not been executed (lazy evaluation). To actually count the words, execute the pipeline:
word_counts.collect()Here’s a portion of the output:
[(u'all', 1), (u'when', 1), (u'"local"', 1), (u'including', 3), (u'computation', 1), (u'Spark](#building-spark).', 1), (u'using:', 1), (u'guidance', 3), ... (u'spark://', 1), (u'programs', 2), (u'documentation', 3), (u'It', 2), (u'graphs', 1), (u'./dev/run-tests', 1), (u'first', 1), (u'latest', 1)]