
Tutorial @ EuroScipy 2016

Yam Peleg, Valerio Maggio Goal of this Tutorial Introduce main features of Keras Learn how simple and pythonic is doing Deep Learning with Keras Understand how easy is to do basic and advanced DL models in Keras; Examples and Hand-on Excerises along the way. Source
https://github.com/leriomaggio/deep-learning-keras-euroscipy2016/
(Tentative) Schedule Attention: Spoilers Warning!Setup( 10 mins )
Part I: Introduction ( ~65 mins )
Intro to ANN ( ~20 mins )
naive pure-Python implementation fast forward, sgd, backpropIntro to Theano ( 15 mins )
Model + SGD with TheanoIntroduction to Keras ( 30 mins )
Overview and main features Theano backend Tensorflow backend Multi-Layer Perceptron and Fully Connected Examples with keras.models.Sequential and Dense HandsOn: MLP with kerasCoffe Break( 30 mins )
Part II: Supervised Learning and Convolutional Neural Nets ( ~45 mins )
Intro: Focus on Image Classification ( 5 mins )
Intro to CNN ( 25 mins )
meaning of convolutional filters examples from ImageNet Meaning of dimensions of Conv filters (through an exmple of ConvNet) Visualising ConvNets HandsOn: ConvNet with kerasAdvanced CNN ( 10 mins )
Dropout MaxPooling Batch NormalisationFamous Models in Keras (likely moved somewhere else) ( 10 mins ) (ref: https://github.com/fchollet/deep-learning-models ) - VGG16 - VGG19 - ResNet50 - Inception v3
HandsOn: Fine tuning a network on new datasetPart III: Unsupervised Learning ( 10 mins )
AutoEncoders ( 5 mins ) word2vec & doc2vec (gensim) & keras.datasets ( 5 mins ) Embedding word2vec and CNN ExercisesPart IV: Advanced Materials ( 20 mins )
RNN and LSTM ( 10 mins ) RNN, LSTM, GRU Example of RNN and LSTM with Text ( ~10 mins ) -- Tentative HandsOn: IMDBWrap up and Conclusions( 5 mins )
RequirementsThis tutorial requires the following packages:
Python version 3.4+ likely Python 2.7 would be fine, but who knows ? :P numpy version 1.10 or later: http://www.numpy.org/ scipy version 0.16 or later: http://www.scipy.org/ matplotlib version 1.4 or later: http://matplotlib.org/ pandas version 0.16 or later: http://pandas.pydata.org scikit-learn version 0.15 or later: http://scikit-learn.org keras version 1.0 or later: http://keras.io theano version 0.8 or later: http://deeplearning.net/software/theano/ ipython / jupyter version 4.0 or later, with notebook support(Optional but recommended):
pyyaml hdf5 and h5py (required if you use model saving/loading functions in keras) NVIDIA cuDNN if you have NVIDIA GPUs on your machines. https://developer.nvidia.com/rdp/cudnn-downloadThe easiest way to get (most) these is to use an all-in-one installer such as Anaconda from Continuum. These are available for multiple architectures.
Python VersionI'm currently running this tutorial with Python 3 on Anaconda
!python --version Python 3.5.2 How to set up your environmentThe quickest and simplest way to setup the environment is to use conda environment manager.
We provide in the materials a deep-learning.yml that is complete and ready to use to set up your virtual environment with conda.
!cat deep-learning.yml name: deep-learning channels: - conda-forge - defaults dependencies: - accelerate=2.3.0=np111py35_3 - accelerate_cudalib=2.0=0 - bokeh=0.12.1=py35_0 - cffi=1.6.0=py35_0 - backports.shutil_get_terminal_size=1.0.0=py35_0 - blas=1.1=openblas - ca-certificates=2016.8.2=3 - cairo=1.12.18=8 - certifi=2016.8.2=py35_0 - cycler=0.10.0=py35_0 - cython=0.24.1=py35_0 - decorator=4.0.10=py35_0 - entrypoints=0.2.2=py35_0 - fontconfig=2.11.1=3 - freetype=2.6.3=1 - gettext=0.19.7=1 - glib=2.48.0=4 - h5py=2.6.0=np111py35_6 - harfbuzz=1.0.6=0 - hdf5=1.8.17=2 - icu=56.1=4 - ipykernel=4.3.1=py35_1 - ipython=5.1.0=py35_0 - ipywidgets=5.2.2=py35_0 - jinja2=2.8=py35_1 - jpeg=9b=0 - jsonschema=2.5.1=py35_0 - jupyter_client=4.3.0=py35_0 - jupyter_console=5.0.0=py35_0 - jupyter_core=4.1.1=py35_1 - libffi=3.2.1=2 - libiconv=1.14=3 - libpng=1.6.24=0 - libsodium=1.0.10=0 - libtiff=4.0.6=6 - libxml2=2.9.4=0 - markupsafe=0.23=py35_0 - matplotlib=1.5.2=np111py35_6 - mistune=0.7.3=py35_0 - nbconvert=4.2.0=py35_0 - nbformat=4.0.1=py35_0 - ncurses=5.9=8 - nose=1.3.7=py35_1 - notebook=4.2.2=py35_0 - numpy=1.11.1=py35_blas_openblas_201 - openblas=0.2.18=4 - openssl=1.0.2h=2 - pandas=0.18.1=np111py35_1 - pango=1.40.1=0 - path.py=8.2.1=py35_0 - pcre=8.38=1 - pexpect=4.2.0=py35_1 - pickleshare=0.7.3=py35_0 - pip=8.1.2=py35_0 - pixman=0.32.6=0 - prompt_toolkit=1.0.6=py35_0 - protobuf=3.0.0b3=py35_1 - ptyprocess=0.5.1=py35_0 - pygments=2.1.3=py35_1 - pyparsing=2.1.7=py35_0 - python=3.5.2=2 - python-dateutil=2.5.3=py35_0 - pytz=2016.6.1=py35_0 - pyyaml=3.11=py35_0 - pyzmq=15.4.0=py35_0 - qt=4.8.7=0 - qtconsole=4.2.1=py35_0 - readline=6.2=0 - requests=2.11.0=py35_0 - scikit-learn=0.17.1=np111py35_blas_openblas_201 - scipy=0.18.0=np111py35_blas_openblas_201 - setuptools=25.1.6=py35_0 - simplegeneric=0.8.1=py35_0 - sip=4.18=py35_0 - six=1.10.0=py35_0 - sqlite=3.13.0=1 - terminado=0.6=py35_0 - tk=8.5.19=0 - tornado=4.4.1=py35_1 - traitlets=4.2.2=py35_0 - wcwidth=0.1.7=py35_0 - wheel=0.29.0=py35_0 - widgetsnbextension=1.2.6=py35_3 - xz=5.2.2=0 - yaml=0.1.6=0 - zeromq=4.1.5=0 - zlib=1.2.8=3 - cudatoolkit=7.5=0 - ipython_genutils=0.1.0=py35_0 - jupyter=1.0.0=py35_3 - libgfortran=3.0.0=1 - llvmlite=0.11.0=py35_0 - mkl=11.3.3=0 - mkl-service=1.1.2=py35_2 - numba=0.26.0=np111py35_0 - pycparser=2.14=py35_1 - pyqt=4.11.4=py35_4 - snakeviz=0.4.1=py35_0 - pip: - backports.shutil-get-terminal-size==1.0.0 - certifi==2016.8.2 - cycler==0.10.0 - cython==0.24.1 - decorator==4.0.10 - h5py==2.6.0 - ipykernel==4.3.1 - ipython==5.1.0 - ipython-genutils==0.1.0 - ipywidgets==5.2.2 - jinja2==2.8 - jsonschema==2.5.1 - jupyter-client==4.3.0 - jupyter-console==5.0.0 - jupyter-core==4.1.1 - keras==1.0.7 - mako==1.0.4 - markupsafe==0.23 - matplotlib==1.5.2 - mistune==0.7.3 - nbconvert==4.2.0 - nbformat==4.0.1 - nose==1.3.7 - notebook==4.2.2 - numpy==1.11.1 - pandas==0.18.1 - path.py==8.2.1 - pexpect==4.2.0 - pickleshare==0.7.3 - pip==8.1.2 - prompt-toolkit==1.0.6 - protobuf==3.0.0b2 - ptyprocess==0.5.1 - pygments==2.1.3 - pygpu==0.2.1 - pyparsing==2.1.7 - python-dateutil==2.5.3 - pytz==2016.6.1 - pyyaml==3.11 - pyzmq==15.4.0 - qtconsole==4.2.1 - requests==2.11.0 - scikit-learn==0.17.1 - scipy==0.18.0 - setuptools==25.1.4 - simplegeneric==0.8.1 - six==1.10.0 - tensorflow==0.10.0rc0 - terminado==0.6 - theano==0.8.2 - tornado==4.4.1 - traitlets==4.2.2 - wcwidth==0.1.7 - wheel==0.29.0 - widgetsnbextension==1.2.6 prefix: /home/valerio/anaconda3/envs/deep-learning Recreate the Conda Environment A. Create the Environment conda create env -f deep-learning.yml # this file is for linux channels.If you're using a Mac OSX , we also provided in the repo the conda file that is compatible with osx-channels :
conda create env -f deep-learning-osx.yml # this file is for OSX channels.B. Activate the new deep-learning Environment
source activate deep-learning Optionals 1. Enabling Conda-ForgeIt is strongly suggested to enable conda forge in your Anaconda installation.
Conda-Forgeis a github organisation containing repositories of conda recipies.
To add conda-forge as an additional anaconda channel it is just required to type:
conda config --add channels conda-forge 2. Configure Theano1) Create the theanorc file:
touch $HOME/.theanorc2) Copy the following content into the file:
[global] floatX = float32 device = gpu # switch to cpu if no GPU is available on your machine [nvcc] fastmath = True [lib] cnmem=.90More on theano documentation
3. Installing Tensorflow as backend # Ubuntu/Linux 64-bit, GPU enabled, Python 3.5 # Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below. export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.10.0rc0-cp35-cp35m-linux_x86_64.whl pip install --ignore-installed --upgrade $TF_BINARY_URLMore on tensorflow documentation
Test if everything is up&running 1. Check import import numpy as np import scipy as sp import pandas as pd import matplotlib.pyplot as plt import sklearn import keras Using Theano backend. Using gpu device 0: GeForce GTX 760 (CNMeM is enabled with initial size: 90.0% of memory, cuDNN 4007) 2. Check installeded Versions import numpy print('numpy:', numpy.__version__) import scipy print('scipy:', scipy.__version__) import matplotlib print('matplotlib:', matplotlib.__version__) import IPython print('iPython:', IPython.__version__) import sklearn print('scikit-learn:', sklearn.__version__) numpy: 1.11.1 scipy: 0.18.0 matplotlib: 1.5.2 iPython: 5.1.0 scikit-learn: 0.17.1 import keras print('keras: ', keras.__version__) import theano print('Theano: ', theano.__version__) # optional import tensorflow as tf print('Tensorflow: ', tf.__version__) keras: 1.0.7 Theano: 0.8.2 Tensorflow: 0.10.0rc0 If everything worked till down here, you're ready to start! Consulting MaterialYou have two options to go through the material presented in this tutorial:
Read (and execute) the material as iPython/Jupyter notebooks (just) read the material as (HTML) slidesIn the first case, all you need to do is just execute ipython notebook (or jupyter notebook ) depending on the version of iPython you have installed on your machine
( jupyter command works in case you have iPython 4.0.x installed)
In the second case, you may simply convert the provided notebooks in HTML slides and see them into your browser thanks to nbconvert .
Thus, move to the folder where notebooks are stored and execute the following command:
jupyter nbconvert --to slides ./*.ipynb --post serve(Please substitute jupyter with ipython in the previous command if you have iPython 3.x installed on your machine)
In case.....you wanna do both (interactive and executable slides), I highly suggest to install the terrific RISE ipython notebook extension: https://github.com/damianavila/RISE